If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-6x-49=0
a = 25; b = -6; c = -49;
Δ = b2-4ac
Δ = -62-4·25·(-49)
Δ = 4936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4936}=\sqrt{4*1234}=\sqrt{4}*\sqrt{1234}=2\sqrt{1234}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{1234}}{2*25}=\frac{6-2\sqrt{1234}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{1234}}{2*25}=\frac{6+2\sqrt{1234}}{50} $
| 2/3=m/32 | | x^2+3x+7-2=27 | | 0.2(-1.67-4x)=-0.3x | | -0.2(-1.67-4x)=-0.3x | | 2=3(x-4)+1-2x | | 3(x-2)+4=4(x-4)+4 | | -9(x+2)+3x=4x-5 | | 3d=(d+4)=-2 | | 48-x+12-x=x | | 5y•6=27y•37 | | P(x)=-10x+80 | | x=60/48 | | C(4)=25p | | y+y(y+500)=1210 | | 10/2=x/0.9 | | 2(11-4x)=36 | | (6x+3)°=(10x-9)° | | -(9)/(15)y+(3)/(21)=(5)/(15)y-(14)/(21) | | +3v+15v+7=8v+43 | | 5x/11=41 | | P=-6x^2+72x-192 | | 9u–14=-10+12u | | -6x^2+72x=-192 | | v-7.25=6.51 | | 5z+10=10z+5 | | (2)4b+8/2=10(2) | | 10^n=0.0000001 | | 4x-5x-6x=0 | | 0.5x0.75+9x=5x+1.5 | | x+3.1=-6x+14.3 | | 8x+3.1=-6x+14.3. | | x+23=369 |